AP Statistics

Module 7 Free Response and Essay Tips

Below you will find a breakdown of different AP topics for this module. The sections include expectations for answering questions over each topic and examples of how these areas should be handled:

BASICS FOR T TESTS AND T CONFIDENCE INTERVALS

Actual AP Exam Expectations	Notes
T test and interval conditions	State if: Population standard deviation is unknown, SRS, normality, independence, Pop > 10n Create a boxplot and state the shape and if any outliers *If $n<15$ the data must give an approx. normal distribution with little skewness and outliers. PROCEED WITH EXTREME CAUTION! *If $15<n<40$ the data must give a distribution that does not have extreme outliers or extreme skewness. PROCEED WITH CAUTION!! *If $n>40$, it is justified to use a t procedure because the CLT applies

CONFIDENCE INTERVALS -- 1 sample and 2 sample and MARGIN OF ERROR

Actual AP Exam Expectations	Notes
1. SHOW all steps of the confidence interval	1) Parameter: $\mathbf{1}$ sample tinterval "We want to estimate the mean, μ, of context of problem " Matched pairs (1 sample t interval) "We want to estimate the mean difference of \qquad context between sample 1 and sample 2 in context. 2 sample tinterval "We want to estimate the mean difference between population 1 and population 2 in context of problem" 2) Conditions ** For 2 sample T interval, you must check and state conditions for both populations** *Population standard deviation is unknown *SRS: If stated in problem, tell the grader, if not, then you should say: We are not told if SRS of all \qquad , so proceed with caution! *Normality $-\mathrm{n}<15, \quad 15<\mathrm{n}<40, \quad \mathrm{n}>40$ SEE \#3 ABOVE in condition section *Independence - Each observation is independent and population > 10 n ie: if I have 100 calculators, we tell AP Grader, we can assume that each calculator is independent and there are more than 10(100) or 1000 calculators Name the interval: One sample t interval or 2 sample t interval

	3) Show all work: If you use you the formula, you must do all work by hand and show the equation. If you use the calculator you must NAME the test/interval that you selected, ALL inputted information, and ALL output information If DATA is given, graph and describe 4) Interpret the results in the context of the problem and make a connection to the given information. Remember the 3 C's: Context, connections and conclusion.
2. Degrees of Freedom	1 sample t interval: Sample size -1 , which is $\mathrm{n}-1$ 2 sample tinterval: find the degrees of freedom on your calculator when you compute the interval
3. Interpret the results of the confidence interval	Conclusions should be given in terms of the context of the question. 1 sample tinterval: We are \qquad \% confident that the true population mean μ of \qquad context will be between lower value and upper value Matched pairs (1 sample t interval): We are \qquad \% confident that the mean of the population differences of \qquad context is between lower value and upper value $\mathbf{2}$ sample tinterval: We are \qquad \% confident that the true difference between the population mean μ_{1} of \qquad context and the population mean μ_{2} of \qquad is between lower value and upper value
4. T interval equations	1 sample Tinterval: $\bar{x} \pm$ critical value $\left(\frac{s}{\sqrt{n}}\right)$ Matched Pairs (1 sample T interval): $\overline{X_{d}} \pm \frac{s_{d}}{\sqrt{n}}$ *use the mean and standard deviation of the differences* 2 sample T interval: $\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t^{*} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
5. Margin of error	Everything after the $+/-$ in the confidence interval This value shows how accurate we believe our guess is and is based on the variability of the estimate
6. Find the t^{*} for the confidence interval	Using the calculator: Subtract the level of significance from 1. So 1- α and then divide that value by 2 . On the calculator DISTR-> INV T -> AREA: ((1- $\alpha) / 2)$ df: $\mathrm{n}-1->$ ENTER This will give you the critical value t*

- The Margin of error decreases when: t^{*} decreases, confidence level decreases, sample size (n) increases
- Increasing the sample size decreases the width of a confidence interval and the variability
- Use t when you are not given the population standard deviation.
- Use a one sample t interval when you have matched pairs - one sample that is being analyzed at two different times, and we are analyzing the actual difference amount.
- Use a two sample t interval when you have two different samples that are being analyzed and compared to one another to see if they are different.
- When 0 is in the confidence interval, we can assume that there is no difference between the 2 means.
- Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam for the topic.
7.01: Standard Error and T Intervals
https://sas.elluminate.com/site/external/jwsdetect/playback.jnlp?psid=2015-01-
24.0743.M.02B50E368656D296A2DCBFED1F5B9E.vcr\&sid=679

TESTS OF SIGNIFICANCE - One sample T test and 2 sample T test

1. SHOW all steps of the test	1) Parameter: same as confidence intervals 2) Conditions ** For 2 sample T test, you must check and state conditions for both populations** (see above interval \#1 for specifics on each of these) * Population standard deviation is unknown *SRS *Normality *Independence Name the test: One sample t test or 2 sample t test State the null (Ho) and alternative hypotheses (Ha) in context. Note: H_{0} : null hypothesis is ALWAYS = to H_{a} : alternative is < > or \neq 3) Show all work: same as for confidence intervals 4) Interpret the results in the context of the problem and make a connection to the given information. Remember the $\mathbf{3 C \prime s}$

2. State hypotheses in context	1 sample t test: Ho: The true population mean of \qquad context is equal to \qquad . $\mu=\mu_{0} *$ You must at least define what μ is* Ha: The true population mean of \qquad context is $<>\neq$ \qquad . $\mu<>\neq \mu_{0}$ Matched pairs t test: Ho: The mean of the differences between __context population 1 and context population 2_is 0 . $\mu_{1}-\mu_{2}=0 \quad \text { or } \quad \mu_{1}=\mu_{2}$ *You must define what μ_{1} and μ_{2} are* Ha: The mean of the of the differences between __context population 1 and context population 2_ is s $<>\neq 0$. $\mu_{1}-\mu_{2}<>\neq 0 \quad \text { or } \quad \mu_{1}<>\neq \mu_{2}$ 2 sample t test: Ho: The mean context population 1 is equal to the mean context population 2_. $\mu_{1}-\mu_{2}=0 \quad \text { or } \quad \mu_{1}=\mu_{2}$ *You must define what μ_{1} and μ_{2} are* Ha: The mean context population 1 is $<>\neq$ to the mean context population 2. $\mu_{1}-\mu_{2}<>\neq 0 \quad \text { or } \quad \mu_{1}<>\neq \mu_{2}$
3. T test equation (1 sample)	1 sample T test: $\frac{\bar{x}-\mu}{\frac{\mathrm{s}}{\sqrt{\mathrm{n}}}}$ Matched Pairs (1 sample T test): $\frac{\overline{x_{d}}-\mu_{0}}{\frac{s_{d}}{\sqrt{n}}}$ *use the mean and standard deviation of the differences*
4. T test equation (2 sample)	$2 \text { sample T test: } \frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}$
5. Interpret the results of a t test	Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that \qquad context of the problem because the p-value is < > \neq level of significance. There is/is not sufficient evidence to suggest that \qquad restate the null hypothesis

Interpret the results of a t test	Matched pairs t test: Reject or Fail to reject the null hypothesis that the mean differences of _sample 1 and sample 2 is equal to 0 because the p value is $><\neq$ level of significance. There is/is not sufficient evidence to suggest that__restate the null hypothesis
2 sample t test: Reject or Fail to reject the null hypothesis that the	
difference in the population mean of population $1 _$and the	
population mean of_population $2 _$is equal to 0 because the p value	
is $><\neq$ level of significance. There is/is not sufficient evidence to	
suggest that_restate the null hypothesis	

- P-value: The probability of seeing a result from a random sample that is as extreme as or more extreme than the result you got from your random sample, if the null hypothesis is true.
- You can also find the p value, once you have the t score, by using $2^{\text {nd }}->$ Distr $->$ tcdf(lower, upper, df)
- Increasing the sample size decreases the p-value of the test (making the rejection of the null more convincing). As n increases, so does the power of the test.
- Use a two sample t test when you have two different samples that are being analyzed and compared to one another.
- Use a one sample tinterval when you have matched pairs - one sample that is being analyzed at two different times, and we are analyzing the actual difference amount.
- Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam for the topic
7.02-7.06: Significance tests and Difference of Means
https://sas.elluminate.com/site/external/jwsdetect/playback.jnlp?psid=2015-01-
24.0954.M.02B50E368656D296A2DCBFED1F5B9E.vcr\&sid=679

CONFIDENCE INTERVALS -- 1 and 2 proportions and MARGIN OF ERROR

Actual AP Exam Expectations	Notes
1. SHOW all steps of the confidence interval	1) Parameter: "We want to estimate the mean proportion, p, of context of problem " 2) Conditions ** For 2 proportion intervals, you must check and state conditions for both populations** *SRS: If stated in problem, tell the grader, if not, then you should say: We are not told if SRS of all \qquad , so proceed with caution! *Normality $-n p>5$ and $n(1-p)>5$ If these are satisfied then we must say that we assume normality. *Independence - Each observation is independent and population > 10n Name the interval: One proportion or 2 proportion interval 3) Show all work: same as tintervals 4) Interpret the results in the context of the problem and make a connection to the given information. Remember the $\mathbf{3 C \prime s}$: Context, connections and conclusion.
2. Interpret the results of the confidence interval	Conclusions should be given in terms of the context of the question. 1 proportion interval: We are \qquad \% confident that the true population proportion of \qquad context will be between lower value and upper value 2 proportion interval: We are \qquad \% confident that the true difference between \qquad and \qquad context is between lower value and upper value .
3. 1 proportion interval	$\widehat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
4. 2 proportion interval	$\hat{p}_{1}-\hat{p}_{2} \pm z^{*} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$
5. Margin of error	Everything after the $+/$ - in the confidence interval This value shows how accurate we believe our guess is and is based on the variability of the estimate
6. Equation to find sample size	$z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \leq m$ *You will be given m (margin of error)

AP Statistics
Module 7 Free Response and Essay Tips

- When 0 is in the confidence interval, we can assume that there is no difference between the 2 proportions.
- If p is or \hat{p} is not stated, we assume it is 0.5
- When estimating sample size, round up ALWAYS!
- $\hat{p}=\frac{\text { total number of successes in the sample }}{\text { total number of individuals in the sample }}$
- Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam for the topic
7.08, 7.10, 7.11: Confidence Intervals and Proportions, Sample Size, and Margin of Error
https://sas.elluminate.com/site/external/jwsdetect/playback.jnlp?psid=2015-01-
24.1112.M.02B50E368656D296A2DCBFED1F5B9E.vcr\&sid=679

TESTS OF SIGNIFICANCE -- 1 and 2 proportion Z test

Actual AP Exam Expectations	Notes
1. SHOW all steps of the test	1. Parameter: same as confidence intervals for proportions 2. Conditions ** For 2 proportion tests, you must check and state conditions for both populations** Same as confidence intervals for proportions *SRS *Normality *Independence Name the test: One proportion z test or 2 proportion z test State the null (Ho) and alternative hypotheses (Ha) in context. Note: H_{0} : null hypothesis is ALWAYS = to H_{a} : alternative is < > or \neq 3. Show all work: same as test 4. Interpret the results in the context of the problem and make a connection to the given information. Remember the $\mathbf{3} \mathbf{C ' s}$
2. 1 proportion z test	$\frac{\widehat{p}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}$

3. 2 proportion z test	$\begin{gathered} \frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p}) \frac{1}{n_{1}}+\frac{1}{n_{2}}}} \\ * \hat{p}=\frac{\text { total } \# \text { of successes from both samples }}{\text { total number of individuals in both samples }} \end{gathered}$
6. State hypotheses in context	1 proportion z test: Ho: The true population proportion of ___context_ is equal to \qquad $\mathrm{p}=p_{0} *$ You must at least define what p is* Ha: The true population proportion of \qquad context is $<>\neq$ \qquad $\mathrm{p}<>\neq p_{0}$ 2 proportion z test: Ho: The proportion of successes for context population 1 is equal to the proportion of successes for context population 2_. $p_{1}-p_{2}=0 \quad \text { or } \quad p_{1}=p$ *You must define what p_{1} and p_{2} are* Ha: The proportion of successes for context population 1 is $<>\neq$ to the proportion of successes for context population 2. $p_{1}-p_{2}<>\neq 0 \quad \text { or } \quad \overline{p_{1}<>\neq p_{2}}$
4. Interpret the results of the test	Conclusions should be given in terms of the context of the question. 1 proportion z test: Reject or Fail to reject the null hypothesis that proportion of context of the problem is $=$ to p_{0} because the p value is $<>\neq$ level of significance. There is/is not sufficient evidence to suggest that \qquad 2 proportion z test:: Reject or Fail to reject the null hypothesis that the difference in the proportion of context population 1 and context population 2 is equal because the p-value is $\rangle \neq$ level of significance. There is/is not sufficient evidence to suggest that restate the null hypothesis \qquad

- Errors: Type 1 error: rejecting Ho, when it is true

Type 2 error: failing to reject Ho, when it is false
If Ho is true, the probability of a Type 1 error $=\alpha$
The power of a test is the probability of correctly rejecting the Ho

- Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam for the topic

Table entry for p and C is the point t^{*} with probability p lying above it and probability C lying between $-t^{*}$ and t^{*}.

Table B t distribution critical values

df	Tail probability p											
	. 25	. 20	. 15	. 10	. 05	. 025	. 02	. 01	. 005	. 0025	. 001	. 0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	. 816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	. 765	. 978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.92
4	. 741	. 941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610
5	. 727	. 920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869
6	. 718	. 906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959
7	. 711	. 896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408
8	. 706	. 889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041
9	. 703	. 883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.69 C	4.297	4.781
10	. 700	. 879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587
11	. 697	. 876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437
12	. 695	. 873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.318
13	. 694	. 870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221
14	. 692	. 868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.140
15	. 691	. 866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.073
16	. 690	. 865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015
17	. 689	. 863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965
18	. 688	. 862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922
19	. 688	. 861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883
20	. 687	. 860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850
21	. 686	. 859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.819
22	. 686	. 858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.792
23	. 685	. 858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768
24	. 685	. 857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745
25	. 684	. 856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.725
26	. 684	. 856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.707
27	. 684	. 855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.690
28	. 683	. 855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.674
29	. 683	. 854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.659
30	. 683	. 854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.03C	3.385	3.646
40	. 681	. 851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.551
50	. 679	. 849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.496
60	. 679	. 848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.460
80	. 678	. 846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.416
100	. 677	. 845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.390
1000	. 675	. 842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.300
∞	. 674	. 841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291
	50\%	60\%	70\%	80\%	90\%	95\%	96\%	98\%	99\%	99.5\%	99.8\%	99.9\%

Confidence level C

