

Module 7 Free Response and Essay Tips

Below you will find a breakdown of different AP topics for this module. The sections include expectations for answering questions over each topic and examples of how these areas should be handled:

BASICS FOR T TESTS AND T CONFIDENCE INTERVALS

Actual AP Exam Expectations	Notes
T test and interval conditions	State if: Population standard deviation is unknown, SRS, normality, independence, Pop > 10n Create a boxplot and state the shape and if any outliers *If n<15 the data must give an approx. normal distribution with little skewness and outliers. PROCEED WITH EXTREME CAUTION!
	*If 15 <n<40 <a="" a="" data="" distribution="" does="" extreme="" give="" have="" href="PROCEED WITH CAUTION!!" must="" not="" or="" outliers="" skewness.="" that="" the="">PROCEED WITH CAUTION!! *If n > 40, it is justified to use a t procedure because the CLT applies</n<40>

CONFIDENCE INTERVALS -- 1 sample and 2 sample and MARGIN OF ERROR

Actual AP Exam Expectations	Notes
1. SHOW all steps of the confidence interval	Notes 1) Parameter: 1 sample t interval "We want to estimate the mean, μ, of _context of problem" Matched pairs (1 sample t interval) "We want to estimate the mean difference of _context between sample 1 and sample 2 in context. 2 sample t interval "We want to estimate the mean difference between _population 1 and population 2 in context of problem " 2) Conditions ** For 2 sample T interval, you must check and state conditions for both populations** *Population standard deviation is unknown *SRS: If stated in problem, tell the grader, if not, then you should say: We are not told if SRS of all, so proceed with caution! *Normality = n<15, 15 <n<40, n="">40 SEE #3 ABOVE in condition section *Independence = Each observation is independent and population > 10n ie: if I have 100 calculators, we tell AP Grader, we can assume that each calculator is independent and there are more than 10(100) or 1000 calculators Name the interval: One sample t interval or 2 sample t interval</n<40,>

Module 7 Free Response and Essay Tips

	3) Show all work:
	If you use you the formula, you must do all work by hand and show the equation . If you use the calculator you must NAME the test/interval that you selected, ALL inputted information, and ALL output information If DATA is given, graph and describe
	 Interpret the results in the context of the problem and make a connection to the given information. Remember the 3 C's: Context, connections and conclusion.
2. Degrees of Freedom	1 sample t interval: Sample size – 1, which is n-1 2 sample t interval: find the degrees of freedom on your calculator when you compute the interval
	Conclusions should be given in terms of the context of the question. 1 sample t interval: We are% confident that the true population mean μ of context will be between _lower value and _upper value
Interpret the results of the confidence interval	Matched pairs (1 sample t interval): We are% confident that the mean of the population differences ofcontext is between lower value and upper value
	2 sample t interval: We are% confident that the true difference between the population mean μ_1 of context and the population mean μ_2 of context is between lower value and upper value
	1 sample T interval: $\bar{x} \pm critical\ value\ (\frac{s}{\sqrt{n}})$
4. T interval equations	Matched Pairs (1 sample T interval): $\overline{x_d} \pm \frac{s_d}{\sqrt{n}}$ *use the mean and standard deviation of the differences*
	2 sample T interval: $(\bar{x}_1 - \bar{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
5. Margin of error	Everything after the +/- in the confidence interval This value shows how accurate we believe our guess is and is based on the variability of the estimate
6. Find the t* for the confidence interval	Using the calculator: Subtract the level of significance from 1. So $1-\alpha$ and then divide that value by 2. On the calculator DISTR-> INV T -> AREA: (($1-\alpha$)/2) df: n -1 -> ENTER This will give you the critical value t*

- The Margin of error decreases when: t* decreases, confidence level decreases, sample size (n) increases
- Increasing the sample size decreases the width of a confidence interval and the variability
- Use t when you are not given the population standard deviation.
- Use a one sample t interval when you have matched pairs one sample that is being analyzed at two
 different times, and we are analyzing the actual <u>difference</u> amount.
- Use a two sample t interval when you have **two different samples** that are being analyzed and compared to one another to see if they are different.
- When 0 is in the confidence interval, we can assume that there is no difference between the 2 means.
- Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam
 for the topic.

7.01: Standard Error and T Intervals

https://sas.elluminate.com/site/external/jwsdetect/playback.jnlp?psid=2015-01-24.0743.M.02B50E368656D296A2DCBFED1F5B9E.vcr&sid=679

TESTS OF SIGNIFICANCE – One sample T test and 2 sample T test

	1) Parameter: same as confidence intervals
1. SHOW all steps of the test	 2) Conditions ** For 2 sample T test, you must check and state conditions for both populations** (see above interval #1 for specifics on each of these) * Population standard deviation is unknown *SRS *Normality *Independence Name the test: One sample t test or 2 sample t test State the null (Ho) and alternative hypotheses (Ha) in context. Note: H₀: null hypothesis is ALWAYS = to Hₐ: alternative is < > or ≠ 3) Show all work: same as for confidence intervals 4) Interpret the results in the context of the problem and make a connection to the given information. Remember the 3 C's

Module 7 Free Response and Essay Tips

Ho: The true population mean of $\frac{\text{context}}{\mu}$ is equal to $\frac{\text{context}}{\mu}$. He: The true population mean of $\frac{\text{context}}{\mu}$ is equal to $\frac{\text{context}}{\mu}$. He: The true population mean of $\frac{\text{context}}{\mu}$ is $< > \neq \frac{1}{\mu}$. He: The true population mean of $\frac{\text{context}}{\mu}$ is $< > \neq \frac{1}{\mu}$. What he define what μ is * Ha: The mean of the differences between $\frac{\text{context}}{\mu}$ population 1 and $\frac{\text{context}}{\mu}$ and $\frac{1}{\mu}$ are * Ho: The mean of the differences between $\frac{\text{context}}{\mu}$ population 1 and context population 2 is $\frac{1}{\mu}$ is $\frac{1}{\mu}$. Sample t test: He: The mean of the of the differences between $\frac{\text{context}}{\mu}$ population 1 and context population 2 is $\frac{1}{\mu}$. Sample t test: He: The mean context population 1 is equal to the mean $\frac{\text{context}}{\mu}$ population 2 is $\frac{1}{\mu}$. He: The mean $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is $\frac{1}{\mu}$ to the mean $\frac{1}{\mu}$ is $\frac{1}{\mu}$. He: The mean $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is $\frac{1}{\mu}$. The mean $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is $\frac{1}{\mu}$. The mean $\frac{1}{\mu}$ is the mean and standard deviation of the differences. 1. Sample T test: $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is $\frac{1}{\mu}$ is equal to the mean $\frac{1}{\mu}$ is equal to		1 sample t test:
Ha: The true population mean of $\frac{\text{context}}{\mu} \text{ is } <> \neq \frac{1}{\mu}$. Matched pairs t test: Ho: The mean of the differences between $\frac{\text{context population 1 and context population 2}}{\text{to must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ Ha: The mean of the of the differences between $\frac{\text{context population 1 and context population 2}}{\text{to must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ Ha: The mean of the of the differences between $\frac{\text{context population 1 and context population 2}}{\text{to must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ Ha: The mean $\frac{\text{context population 1 is}}{\text{to must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ Ha: The mean $\frac{\text{context population 1 is}}{\text{to must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ Ha: The mean $\frac{\text{context population 1 is}}{\text{to must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ Ha: The mean $\frac{\text{context population 1 is}}{\text{to must population 2}}$. $\frac{\mu_1 - \mu_2 < > \neq 0 \text{ or } \mu_1 = \mu_2}{\text{to the mean context population 1 is}} < > \neq \text{ to the mean context population 2}.}$ $\frac{\mu_1 - \mu_2 < > \neq 0 \text{ or } \mu_1 < > \neq \mu_2}{\text{to the mean context population 1 is}} < > \neq \text{ to the mean context population 2}.}$ $\frac{x_1 - \mu_2}{y_1} < > \neq 0 \text{ or } \mu_1 < > \neq \mu_2$ $\frac{x_2}{y_1} + y_2 < > \neq 0 \text{ or } \mu_1 < > \neq \mu_2}$ $\frac{x_2}{y_1} = \frac{x_2}{y_1} + y_2 < \frac{x_2}{y_1} = \frac{x_2}{y_2}$ *use the mean and standard deviation of the differences* 4. T test equation (2 sample) Conclusions should be given in terms of the context of the question. 1 sample test: Reject or Fail to reject the null hypothesis that $\frac{\text{context of the problem}}{\text{context of the problem}} \text{ because the p-value is } < > \neq \text{ level of significance}. There is y is not sufficient evidence to suggest that}$		-
$\mu <> \neq \mu_0$ $\text{Matched pairs t test:}$ $\text{Ho: The mean of the differences between } \underline{ \text{context population 1 and }} \\ \text{context population 2} \\ \text{is 0.} \\ \mu_1 - \mu_2 = 0 \\ \text{or } \mu_1 = \mu_2 \\ \text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*} \\ \text{Ha: The mean of the of the differences between } \underline{ \text{context population 1}} \\ \text{I and context population 2} \\ \text{is } <> \neq 0. \\ \mu_1 - \mu_2 <> \neq 0 \\ \text{or } \mu_1 <> \neq \mu_2 \\ \text{2 sample t test:} \\ \text{Ho: The mean } \underline{ \text{context population 1}} \\ \text{is equal to the mean } \underline{ \text{context population 2}} \\ \text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*} \\ \text{Ha: The mean } \underline{ \text{context population 1}} \\ \text{is } <> \neq \text{ to the mean } \underline{ \text{context population 2}} \\ \mu_1 - \mu_2 <> \neq 0 \\ \text{ or } \mu_1 = \mu_2 \\ \text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*} \\ \text{Ha: The mean } \underline{ \text{context population 1}} \\ \text{is } <> \neq \text{ to the mean } \underline{ \text{context population 2}} \\ \mu_1 - \mu_2 <> \neq 0 \\ \text{ or } \mu_1 <> \neq \mu_2 \\ \text{3. T test equation (1 sample)} \\ \text{Matched Pairs (1 sample T test): } \frac{\overline{x_d} - \mu_0}{\frac{3d}{\sqrt{\eta}}} \\ \text{*use the mean and standard deviation of the differences*} \\ \text{4. T test equation (2 sample)} \\ \text{Sample T test: } \frac{(\overline{x_1} - \overline{x_2})}{\frac{s_1^2}{h_1} \frac{s_2^2}{h_2}} \\ \text{Conclusions should be given in terms of the context of the question.} \\ \text{1 sample t test: Reject or Fail to reject the null hypothesis that} \\ \underline{ \text{context of the problem}} \text{because the p-value is } <> \neq \text{ level of significance. There is/is not sufficient evidence to suggest that} \\ \text{1 significance. There is/is not sufficient evidence to suggest that} \\ \text{Motore Population 2} \\ Motore $		
Matched pairs t test: Ho: The mean of the differences between $\underline{}$ context population 1 and $\underline{}$ context population 2 is 0. $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$ *You must define what μ_1 and μ_2 are* Ha: The mean of the of the differences between $\underline{}$ context population 1 and context population 2 is $\underline{} < > \neq 0$. $\mu_1 - \mu_2 < > \neq 0$ or $\mu_1 < > \neq \mu_2$ 2 sample t test: Ho: The mean $\underline{}$ context population 1 is equal to the mean $\underline{}$ context population 2. $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$ *You must define what μ_1 and μ_2 are* Ha: The mean $\underline{}$ context population 1 is $\underline{} < > \neq \underline{}$ to the mean $\underline{}$ context population 2. $\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$ *You must define what μ_1 and μ_2 are* Ha: The mean $\underline{}$ context population 1 is $\underline{} < > \neq \underline{}$ to the mean $\underline{}$ context population 2. $\mu_1 - \mu_2 < > \neq 0$ or $\mu_1 < \mu_2$ are* 1 sample $\underline{}$ test: An ample $\underline{}$ test: $\underline{}$ sample $\underline{}$ sample $\underline{}$ test: $\underline{}$ sample $\underline{}$ test: $\underline{}$ sample $\underline{}$ test: $\underline{}$ sample $\underline{}$ test: $\underline{}$ sample $\underline{}$ s		Ha: The true population mean of $\underline{}$ context $\underline{}$ is $<>\neq\underline{}$.
4. T test equation (1 sample) Ho: The mean of the differences between		$\mu <> \neq \mu_0$
		Matched pairs t test:
		Ho: The mean of the differences betweencontext population 1 and
2. State hypotheses in context $ \begin{aligned} & \mu_1 - \mu_2 = 0 & \text{or} & \mu_1 = \mu_2 \\ *You \text{ must define what } \mu_1 \text{ and } \mu_2 \text{ are*} \\ & \text{Ha: The mean of the of the differences between} & \underline{ \text{context population 1}} \\ & \text{I and context population 2} & \text{is} & <> \neq 0. \\ & \mu_1 - \mu_2 <> \neq 0 & \text{or} & \mu_1 <> \neq \mu_2 \end{aligned} $ $ 2 \text{ sample t test:} \\ & \text{Ho: The mean } & \underline{ \text{context population 1}} & \text{is equal to the mean } & \underline{ \text{context population 2}} \\ & \text{ population 2} & \text{ or} & \mu_1 = \mu_2 \\ & \text{ *You must define what } & \mu_1 \text{ and } & \mu_2 \text{ are*} \\ & \text{Ha: The mean } & \underline{ \text{context population 1}} & \text{is} & <> \neq \text{ to the mean } & \underline{ \text{context population 2}} \\ & \text{ $\mu_1 - \mu_2 = 0$} & \text{ or} & \mu_1 = \mu_2 \\ & \text{ *You must define what } & \mu_1 \text{ and } & \mu_2 \text{ are*} \\ & \text{Ha: The mean } & \underline{ \text{context population 1}} & \text{is} & <> \neq \text{ to the mean } & \underline{ \text{context population 2}} \\ & \text{ $\mu_1 - \mu_2 <> \neq 0$} & \text{ or} & \mu_1 <> \neq \mu_2 \end{aligned} $ $ 1 \text{ sample T test: } & \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \\ & \text{ 1 sample T test: } & \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} \\ & \text{ *use the mean and standard deviation of the differences*} \end{aligned} $ $ 2 \text{ sample T test: } & \frac{(\bar{x}_1 - \bar{x}_2)}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ & \text{ Conclusions should be given in terms of the context of the question.} $ $ 1 \text{ sample t test: } & \text{ Reject or Fail to reject the null hypothesis that } \\ & \text{ context of the problem} & \text{ because the p-value is } & \text{ $< \neq \text{ level of significance. There is/is not sufficient evidence to suggest that} $		
You must define what μ_1 and μ_2 are Ha: The mean of the of the differences between		
2. State hypotheses in context $\frac{1 \text{ and context population } 2}{\mu_1 - \mu_2 <> \neq 0} \text{ is } \frac{<> \neq 0.}{\mu_1 <> \neq \mu_2}$ $\frac{2 \text{ sample t test:}}{\text{Ho: The mean context population } 1} \text{ is equal to the mean context population } 2}{\text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and } \mu_2 \text{ are*}}$ $\frac{* \text{Ha: The mean context population } 1}{\text{*you must define what } \mu_1 \text{ and }$		
2. State hypotheses in context $ \mu_1 - \mu_2 <> \neq 0 \qquad \text{or} \qquad \mu_1 <> \neq \mu_2 $ 2 sample t test: $ \text{Ho: The mean context population 1} \text{ is equal to the mean } \underline{\text{context population 2}} \text{ .} $ $ \mu_1 - \mu_2 = 0 \qquad \text{or} \qquad \mu_1 = \mu_2 $ $ *You \text{ must define what } \mu_1 \text{ and } \mu_2 \text{ are}^* $ $ \text{Ha: The mean } \underline{\text{context population 1}} \text{ is } <> \neq \text{ to the mean } \underline{\text{context population 2}}. $ $ \mu_1 - \mu_2 <> \neq 0 \qquad \text{or} \qquad \mu_1 <> \neq \mu_2 $ 1 sample T test: $ \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}} $ 3. T test equation (1 sample) $ \text{Matched Pairs (1 sample T test): } \frac{\overline{x_d} - \mu_0}{\frac{S_d}{\sqrt{n}}} $ *use the mean and standard deviation of the differences* $ \text{2 sample T test: } \frac{(\overline{x_1} - \overline{x_2})}{\sqrt{n_1 + n_2}} $ 4. T test equation (2 sample) $ \text{2 sample T test: } \frac{(\overline{x_1} - \overline{x_2})}{\sqrt{n_1 + n_2}} $ Conclusions should be given in terms of the context of the question. $ \text{1 sample t test: Reject or Fail to reject the null hypothesis that } $ $ \text{context of the problem} \text{ because the p-value is } <> \neq \text{ level of significance. There is/is not sufficient evidence to suggest that } $		Ha: The mean of the of the differences between <u>context population</u>
2 sample t test: Ho: The mean context population 1 is equal to the mean context population 2. $\mu_1 - \mu_2 = 0 \text{or} \mu_1 = \mu_2$ *You must define what μ_1 and μ_2 are* Ha: The mean context population 1 is $< > \neq$ to the mean context population 2. $\mu_1 - \mu_2 < > \neq 0 \text{or} \mu_1 = \mu_2$ *You must define what μ_1 and μ_2 are* Ha: The mean context population 1 is $< > \neq$ to the mean context population 2. $\mu_1 - \mu_2 < > \neq 0 \text{or} \mu_1 < > \neq \mu_2$ 1 sample T test: $\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ *use the mean and standard deviation of the differences* 4. T test equation (2 sample) 2 sample T test: $\frac{(\overline{x}_1 - \overline{x}_2)}{s_1^2 + s_2^2}$ $\sqrt{s_1^2 + s_2^2}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is $< > \neq$ level of significance. There is/is not sufficient evidence to suggest that	3 (1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	<u>1 and context population 2</u> is $\underline{} < > \neq 0$.
Ho: The mean context population 1 is equal to the mean context population 2 . $\mu_1 - \mu_2 = 0 \text{or} \mu_1 = \mu_2 \\ \text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ arr}^* \\ \text{Ha: The mean context population 1} \text{ is } <> \neq \text{ to the mean context population 2}. \\ \mu_1 - \mu_2 <> \neq 0 \text{or} \mu_1 <> \neq \mu_2 \\ \hline 1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}} \\ \hline 3. \text{T test equation (1 sample)} \\ \hline \text{Matched Pairs (1 sample T test): } \frac{\overline{x_d} - \mu_0}{\frac{s_d}{\sqrt{n}}} \\ \text{*use the mean and standard deviation of the differences*} \\ \hline \text{4. T test equation (2 sample)} \\ \hline \text{2 sample T test: } \frac{(\overline{x_1} - \overline{x_2})}{\sqrt{n_1^2 + n_2^2}} \\ \hline \text{Conclusions should be given in terms of the context of the question.} \\ \hline \text{1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is <> \neq \text{ level of significance. There is/is not sufficient evidence to suggest that} \\ \hline \end{tabular}$	2. State hypotheses in context	$\mu_1 - \mu_2 <> \neq 0$ or $\mu_1 <> \neq \mu_2$
Ho: The mean context population 1 is equal to the mean context population 2 . $\mu_1 - \mu_2 = 0 \text{or} \mu_1 = \mu_2 \\ \text{*You must define what } \mu_1 \text{ and } \mu_2 \text{ are*} \\ \text{Ha: The mean context population 1} \text{ is } <> \neq \text{ to the mean context population 2}. \\ \mu_1 - \mu_2 <> \neq 0 \text{or} \mu_1 <> \neq \mu_2 \\ \hline 1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}} \\ \hline 3. \text{T test equation (1 sample)} \\ \hline \text{Matched Pairs (1 sample T test): } \frac{\overline{x_d} - \mu_0}{\frac{s_d}{\sqrt{n}}} \\ \text{*use the mean and standard deviation of the differences*} \\ \hline \text{4. T test equation (2 sample)} \\ \hline \text{2 sample T test: } \frac{(\overline{x_1} - \overline{x_2})}{\sqrt{n_1^2 + n_2^2}} \\ \hline \text{Conclusions should be given in terms of the context of the question.} \\ \hline \text{1 sample t test: Reject or Fail to reject the null hypothesis that } \\ \hline \text{context of the problem} \\ \text{because the p-value is <> \neq \text{ level of significance. There is/is not sufficient evidence to suggest that} \\ \hline \end{tabular}$		2 sample t test
$\frac{\text{population 2}}{\mu_1 - \mu_2} = 0 \text{or} \mu_1 = \mu_2 \\ * \text{You must define what } \mu_1 \text{ and } \mu_2 \text{ are*} \\ \text{Ha: The mean } \frac{\text{context population 1}}{\text{is}} \text{ is } <> \neq \text{ to the mean } \frac{\text{context population 2}}{\text{orn}}.$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ $2 \text{ sample T test: } \frac{\overline{(\bar{x}_1 - \bar{x}_2)}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $4. \text{ T test equation (2 sample)}$ $2 \text{ sample T test: } \frac{(\overline{x}_1 - \bar{x}_2)}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $2 \text{ Conclusions should be given in terms of the context of the question.}$ $1 \text{ sample t test: } \text{Reject or Fail to reject the null hypothesis that}$ $2 \text{ context of the problem} \text{ because the p-value is } <> \neq \text{ level of significance. There is/is not sufficient evidence to suggest that}$		-
$\mu_1 - \mu_2 = 0 \text{or} \mu_1 = \mu_2 \\ * \text{You must define what } \mu_1 \text{ and } \mu_2 \text{ are*} \\ \textbf{Ha: The mean } \underbrace{\text{context population 1}}_{\text{to population 2}} \text{ is } <>\neq \text{ to the mean } \underbrace{\text{context population 2}}_{\text{population 2}}.$ $\mu_1 - \mu_2 <>\neq 0 \text{ or } \mu_1 <>\neq \mu_2$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ $3. \text{T test equation (1 sample)}$ $\text{Matched Pairs (1 sample T test): } \frac{\overline{x_d} - \mu_0}{\frac{s_d}{\sqrt{n}}}$ $* \text{use the mean and standard deviation of the differences*}$ $2 \text{ sample T test: } \frac{(\overline{x}_1 - \overline{x}_2)}{s_1^2 + s_2^2}$ $\text{Conclusions should be given in terms of the context of the question.}}$ $1 \text{ sample t test: } \text{Reject or Fail to reject the null hypothesis that}$ $\text{context of the problem} \text{because the p-value is } <>\neq \text{level of significance. There is/is not sufficient evidence to suggest that}}$		<u> </u>
You must define what μ_1 and μ_2 are Ha: The mean context population 1 is $<>\neq$ to the mean context population 2. $\mu_1 - \mu_2 <> \neq 0 \text{or} \mu_1 <> \neq \mu_2$ 1 sample T test: $\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ Matched Pairs (1 sample T test): $\frac{\overline{x_d} - \mu_0}{\frac{s_d}{\sqrt{n}}}$ *use the mean and standard deviation of the differences* 2 sample T test: $\frac{(\overline{x}_1 - \overline{x}_2)}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is $<>\neq$ level of significance. There is/is not sufficient evidence to suggest that		* *
Ha: The mean context population 1 is $<$ > \neq to the mean context population 2. $\mu_1 - \mu_2 <$ > \neq 0 or $\mu_1 <$ > \neq μ_2 1 sample T test: $\frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ Matched Pairs (1 sample T test): $\frac{\overline{x_d} - \mu_0}{\frac{s_d}{\sqrt{n}}}$ *use the mean and standard deviation of the differences* 2 sample T test: $\frac{(\overline{x_1} - \overline{x_2})}{\sqrt{n_1}}$ $\frac{s_1^2 + s_2^2}{\sqrt{n_1} + n_2}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is <> \neq level of significance. There is/is not sufficient evidence to suggest that		
$\frac{\text{population 2.}}{\mu_1 - \mu_2 <> \neq 0} \text{or} \mu_1 <> \neq \mu_2$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$ $2 \text{ sample T test: } \frac{(\overline{x}_1 - \overline{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ $2 \text{ conclusions should be given in terms of the context of the question.}$ $1 \text{ sample t test: } \text{Reject or Fail to reject the null hypothesis that}$ $2 \text{ context of the problem} \text{ because the p-value is } <> \neq \text{ level of significance. There is/is not sufficient evidence to suggest that}$		
$\mu_1 - \mu_2 <> \neq 0 \qquad \text{or} \qquad \mu_1 <> \neq \mu_2$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$ $1 \text{ sample T test: } \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$ $2 \text{ sample T test: } \frac{(\overline{x}_1 - \overline{x}_2)}{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$ $2 \text{ conclusions should be given in terms of the context of the question.}$ $1 \text{ sample t test: } \frac{(\overline{x}_1 - \overline{x}_2)}{\sqrt{n_1^2 + n_2^2}}$ $1 \text{ context of the problem because the p-value is } <> \neq \text{ level of significance. There is/is not sufficient evidence to suggest that}$		
1 sample T test: $\frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$ Matched Pairs (1 sample T test): $\frac{\bar{x}d - \mu_0}{\frac{Sd}{\sqrt{n}}}$ *use the mean and standard deviation of the differences* 2 sample T test: $\frac{(\bar{x}_1 - \bar{x}_2)}{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that $\frac{\text{context of the problem}}{\text{significance. There is/is not sufficient evidence to suggest that}}$		
 Jean sequence of a t test of test of a t test of te		12 /2
 Jean T test equation (1 sample) Matched Pairs (1 sample T test): \$\frac{\overline{x}_d - \mu_0}{\frac{s}_d}\$\$ *use the mean and standard deviation of the differences* T test equation (2 sample) 2 sample T test: \$\frac{(\overline{x}_1 - \overline{x}_2)}{\sum_{11}^{\overline{s}_2}}\$\$ \$\frac{s_2}{n_1} + \frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_1}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_1}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$\frac{s_2}{n_2}\$\$ \$s		1 sample T test: $\frac{\bar{x} - \mu}{\bar{x}}$
use the mean and standard deviation of the differences 4. T test equation (2 sample) 2 sample T test: $\frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that $\frac{\text{context of the problem}}{\text{context of the problem}} \text{ because the p-value is <> \neq level of significance. There is/is not sufficient evidence to suggest that}$		
use the mean and standard deviation of the differences 4. T test equation (2 sample) 2 sample T test: $\frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that $\frac{\text{context of the problem}}{\text{context of the problem}} \text{ because the p-value is <> \neq level of significance. There is/is not sufficient evidence to suggest that}$		VII
use the mean and standard deviation of the differences 4. T test equation (2 sample) 2 sample T test: $\frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that $\frac{\text{context of the problem}}{\text{context of the problem}} \text{ because the p-value is <> \neq level of significance. There is/is not sufficient evidence to suggest that}$	3. T test equation (1 sample)	$\overline{x_d} - \mu_0$
use the mean and standard deviation of the differences 4. T test equation (2 sample) 2 sample T test: $\frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that $\frac{\text{context of the problem}}{\text{context of the problem}} \text{ because the p-value is <> \neq level of significance. There is/is not sufficient evidence to suggest that}$		Matched Pairs (1 sample T test): $\frac{s}{\underline{s}\underline{d}}$
4. T test equation (2 sample)		•
Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is < > ≠ level of significance. There is/is not sufficient evidence to suggest that		ruse the mean and standard deviation of the differences."
Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is < > ≠ level of significance. There is/is not sufficient evidence to suggest that		$(\bar{x}_1 - \bar{x}_2)$
Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is < > ≠ level of significance. There is/is not sufficient evidence to suggest that	A Tract connection (2 comple)	2 sample 1 test:
Conclusions should be given in terms of the context of the question. 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is < > ≠ level of significance. There is/is not sufficient evidence to suggest that	4. I test equation (2 sample)	$\left \frac{s_1^2}{s_2^2}\right $
 1 sample t test: Reject or Fail to reject the null hypothesis that context of the problem because the p-value is < > ≠ level of significance. There is/is not sufficient evidence to suggest that 		√ ¹¹ 112
5. Interpret the results of a t test		Conclusions should be given in terms of the context of the question.
5. Interpret the results of a t test		1 sample t test: Reject or Fail to reject the null hypothesis that
significance. There is/is not sufficient evidence to suggest that	5. Interpret the results of a t test	
		•
l		

Interpret the results of a t test	Matched pairs t test: Reject or Fail to reject the null hypothesis that the mean differences of <u>sample 1 and sample 2</u> is equal to 0 because the p value is $> < \neq$ level of significance. There is/is not sufficient evidence to suggest that <u>restate the null hypothesis</u> .
	2 sample t test: Reject or Fail to reject the null hypothesis that the difference in the population mean of <u>population 1</u> and the population mean of <u>population 2</u> is equal to 0 because the p value is $> < \neq$ level of significance. There is/is not sufficient evidence to suggest that <u>restate the null hypothesis</u> .

- <u>P-value:</u> The probability of seeing a result from a random sample that is as extreme as or more extreme than the result you got from your random sample, if the null hypothesis is true.
- You can also find the p value, once you have the t score, by using 2nd -> Distr -> tcdf(lower, upper, df)
- Increasing the sample size decreases the p-value of the test (making the rejection of the null more convincing). As n increases, so does the power of the test.
- Use a two sample t test when you have two different samples that are being analyzed and compared to
 one another.
- Use a one sample t interval when you have matched pairs one sample that is being analyzed at two
 different times, and we are analyzing the actual <u>difference</u> amount.
- Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam for the topic

7.02-7.06: Significance tests and Difference of Means

https://sas.elluminate.com/site/external/jwsdetect/playback.jnlp?psid=2015-01-24.0954.M.02B50E368656D296A2DCBFED1F5B9E.vcr&sid=679

Module 7 Free Response and Essay Tips

CONFIDENCE INTERVALS -- 1 and 2 proportions and MARGIN OF ERROR

Actual AP Exam Expectations	Notes
	Parameter: "We want to estimate the mean proportion, p, of <u>context of problem</u> "
	2) Conditions ** For 2 proportion intervals, you must check and state conditions for both populations** *SRS: If stated in problem, tell the grader, if not, then you should say: We are not told if SRS of all, so proceed with caution!
SHOW all steps of the confidence interval	*Normality – np > 5 and n(1-p)>5 If these are satisfied then we must say that we assume normality. *Independence – Each observation is independent and population > 10n
	Name the interval: One proportion or 2 proportion interval
	3) Show all work: same as t intervals
	 Interpret the results in the context of the problem and make a connection to the given information. Remember the 3 C's: Context, connections and conclusion.
Interpret the results of the confidence interval	Conclusions should be given in terms of the context of the question. 1 proportion interval: We are% confident that the true population proportion ofcontext will be between lower value and upper value
	2 proportion interval: We are% confident that the true difference between context and context is between <u>lower value</u> and <u>upper value</u> .
3. 1 proportion interval	$\widehat{p}\pmz^*\sqrt{rac{\widehat{p}(1-\widehat{p})}{n}}$
4. 2 proportion interval	$\hat{p}_1 - \hat{p}_2 \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
5. Margin of error	Everything after the +/- in the confidence interval This value shows how accurate we believe our guess is and is based on the variability of the estimate
6. Equation to find sample size	$z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le m$ *You will be given m (margin of error)

- When 0 is in the confidence interval, we can assume that there is no difference between the 2 proportions.
- If p is or \hat{p} is not stated, we assume it is 0.5
- When estimating sample size, round up ALWAYS!
- $\hat{p} = \frac{\text{total number of successes in the sample}}{\text{total number of individuals in the sample}}$
- Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam
 for the topic
- 7.08, 7.10, 7.11: Confidence Intervals and Proportions, Sample Size, and Margin of Error https://sas.elluminate.com/site/external/jwsdetect/playback.jnlp?psid=2015-01-24.1112.M.02B50E368656D296A2DCBFED1F5B9E.vcr&sid=679

TESTS OF SIGNIFICANCE -- 1 and 2 proportion Z test

Actual AP Exam Expectations	Notes
1. SHOW all steps of the test	 Parameter: same as confidence intervals for proportions Conditions ** For 2 proportion tests, you must check and state conditions for both populations** Same as confidence intervals for proportions *SRS *Normality *Independence Name the test: One proportion z test or 2 proportion z test State the null (Ho) and alternative hypotheses (Ha) in context. Note: H₀: null hypothesis is ALWAYS = to Hₐ: alternative is < > or ≠ Show all work: same as t test Interpret the results in the context of the problem and make a connection to the given information. Remember the 3 C's
2. 1 proportion z test	$\frac{\widehat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$

Module 7 Free Response and Essay Tips

3. 2 proportion z test	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})\frac{1}{n_1} + \frac{1}{n_2}}}$ $*\hat{p} = \frac{total \# of successes from both samples}{total number of individuals in both samples}$
	1 proportion z test: Ho: The true population proportion ofcontext_ is equal to $p = p_0 * \text{You must at least define what p is*}$ Ha: The true population proportion ofcontext is $<>\neq$ $p <>\neq p_0$
6. State hypotheses in context	2 proportion z test: Ho: The proportion of successes for <u>context population 1</u> is equal to the proportion of successes for <u>context population 2</u> . $p_1 - p_2 = 0 \qquad \text{or} \qquad p_1 = p$ *You must define what p_1 and p_2 are* Ha: The proportion of successes for <u>context population 1</u> is $< > \neq$ to the proportion of successes for <u>context population 2</u> . $p_1 - p_2 < > \neq 0 \qquad \text{or} \qquad p_1 < > \neq p_2$
4. Interpret the results of the test	Conclusions should be given in terms of the context of the question. 1 proportion z test: Reject or Fail to reject the null hypothesis that proportion of <u>context of the problem</u> is = to p_0 because the p-value is $< > \neq$ level of significance. There is/is not sufficient evidence to suggest that <u>restate the null hypothesis</u> .
	2 proportion z test:: Reject or Fail to reject the null hypothesis that the difference in the proportion of <u>context population 1 and context population 2</u> is equal because the p-value is < > ≠ level of significance. There is/is not sufficient evidence to suggest that restate the null hypothesis .

Errors: Type 1 error: rejecting Ho, when it is true
 Type 2 error: failing to reject Ho, when it is false
 If Ho is true, the probability of a Type 1 error = α
 The power of a test is the probability of correctly rejecting the Ho

• Here is a video specific to this topic. It includes examples and how to be most successful on the AP exam for the topic

Table B	t dist	Table entry C is the poi probability above it and probability between -t	nt t* with p lying l C lying * and t*.		_			1*	Probab	ility p	
						Tail prob	pability p				
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.00

						Tail prob	pability p					
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60
3	.765	.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.9
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.61
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.86
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.95
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.40
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.04
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.78
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.58
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.43
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.31
13	.694	.870	1.079	1.350	1.771	2,160	2.282	2.650	3.012	3.372	3.852	4.22
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.14
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.01
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.92
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.88
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.85
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.81
		.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.79
22	.686	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.76
23	.685	.857	1.059	1.319	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.74
24 25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.72
	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.70
26 27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.69
		.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
28	.683	.854	1.055	1.313	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.65
29	.683	.854	1.055	1.310	1.697	2.043	2.147	2.457	2.750	3.030	3.385	3.64
30	.683	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.55
40		.849	1.030	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.49
50	.679		1.047	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.46
60	.679	.848	1.043		1.664	1.990	2.099	2.374	2.639	2.887	3.195	3.41
80	.678	.846 .845	1.043	1.292	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.39
100	.677		1.042	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.30
∞ 0001	.675 .674	.842	1.037	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.29
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9

Confidence level C