Assumptions for Inference (and the conditions that confirm or override them)

Proportions (z)

- One Sample
 - 1. Individuals are independent
 - 2. Sample is sufficiently large
- Two Sample
 - 1. Samples are independent
 - 2. Data in each sample are independent
 - 3. Both samples are sufficiently large

Means (t)

- **One Sample** (df = n 1)
 - 1. Individuals are independent
 - 2. Population has a Normal model
- Matched Pairs (df = n 1)
 - 1. Data are matched
 - 2. Individuals are independent
 - 3. Population of differences is Normal
- **Two Independent Samples** (df from calculator)
 - 1. Samples are independent
 - 2. Data in each sample are independent
 - 3. Both populations are Normal

Distributions (Chi-Square)

- **Goodness of Fit** (df = #cells 1; one variable, one sample compared to population model)
 - 1. Data are counts
 - 2. Data in sample are independent
 - 3. Sample is sufficiently large
- **Homogeneity** (df = (r-1)(c-1); several groups compared on one variable)
 - 1. Data are counts
 - 2. Data in groups are independent
 - 3. Groups are sufficiently large
- **Independence** (df = (r-1)(c-1); sample from one population classified on two variables)
 - 1. Data are counts
 - 2. Data are independent
 - 3. Sample is sufficiently large

Regression (t, df = n - 2)

- Association between two measurement variables ($\beta = 0$?)
 - 1. Form of relationship is linear
 - 2. Errors are independent
 - 3. Variability of errors is constant
 - 4. Errors have a Normal model

- 1. SRS and < 10% of population
- 2. Successes and failures ≥ 10
- 1. (Think about how the data were collected.)
- 2. Both SRSs and < 10% of populations OR random allocation
- 3. Successes and failures ≥ 10 for both
- 1. SRS and < 10% of the population
- 2. Histogram is unimodal and symmetric*
- 1. (Think about the design.)
- 2. SRS and < 10% OR random allocation
- 3. Histogram of differences is unimodal and symmetric
- 1. (Think about the design.)
- 2. SRSs and < 10% OR random allocation
- 3. Both histograms are unimodal and symmetric*
- 1. (Are they?)
- 2. SRS and < 10% of the population
- 3. All expected counts $\geq \hat{5}$
- 1. (Are they?)
- 2. SRSs and < 10% OR random allocation
- 3. All expected counts ≥ 5
- 1. (Are they?)
 - 2. SRSs and < 10% of the population
 - 3. All expected counts ≥ 5
 - 1. Scatterplot looks approx linear
 - 2. No apparent pattern in residuals plot
 - 3. Residuals plot has consistent spread
 - 4. Histogram of residuals is approximately unimodal and symmetric*

(*less critical as *n* increases)